

Welcome to codepost-stats’s documentation!

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 codepost_stats	

 	
 	
 codepost_stats.analyzers	

 	
 	
 codepost_stats.analyzers.abstract	

 	
 	
 codepost_stats.analyzers.abstract.base	

 	
 	
 codepost_stats.analyzers.abstract.simple	

 	
 	
 codepost_stats.analyzers.pool	

 	
 	
 codepost_stats.analyzers.standard	

 	
 	
 codepost_stats.event_loop	

 	
 	
 codepost_stats.helpers	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | K
 | M
 | N
 | O
 | R
 | S
 | V

_

 	
 	_course (codepost_stats.analyzers.abstract.base.BaseAnalyzer attribute)

 	_event_assignment() (codepost_stats.analyzers.abstract.base.AbstractAnalyzer method)

 	(codepost_stats.analyzers.abstract.base.BaseAnalyzer method)

 	_event_comment() (codepost_stats.analyzers.abstract.base.AbstractAnalyzer method)

 	(codepost_stats.analyzers.abstract.base.BaseAnalyzer method)

 	_event_course() (codepost_stats.analyzers.abstract.base.AbstractAnalyzer method)

 	(codepost_stats.analyzers.abstract.base.BaseAnalyzer method)

 	_event_file() (codepost_stats.analyzers.abstract.base.AbstractAnalyzer method)

 	(codepost_stats.analyzers.abstract.base.BaseAnalyzer method)

 	
 	_event_submission() (codepost_stats.analyzers.abstract.base.AbstractAnalyzer method)

 	(codepost_stats.analyzers.abstract.base.BaseAnalyzer method)

 	_name (codepost_stats.analyzers.abstract.base.AbstractAnalyzer attribute)

 	(codepost_stats.analyzers.abstract.base.BaseAnalyzer attribute)

 	_normalize_str() (codepost_stats.analyzers.abstract.base.AbstractAnalyzer method)

 	_reset() (codepost_stats.analyzers.abstract.base.AbstractAnalyzer method)

 	(codepost_stats.analyzers.abstract.base.BaseAnalyzer method)

A

 	
 	AbstractAnalyzer (class in codepost_stats.analyzers.abstract.base)

 	AbstractAnalyzerEventLoop (class in codepost_stats.event_loop)

 	AbstractAnalyzerPool (class in codepost_stats.analyzers.pool)

 	
 	add() (codepost_stats.analyzers.abstract.simple.CounterAnalyzer method)

 	AnalyzerPool (class in codepost_stats.analyzers.pool)

 	analyzers() (codepost_stats.analyzers.pool.AbstractAnalyzerPool method)

 	assignments (codepost_stats.event_loop.CourseAnalyzerEventLoop property)

B

 	
 	BaseAnalyzer (class in codepost_stats.analyzers.abstract.base)

C

 	
 	check_int_like() (in module codepost_stats.helpers)

 	
 codepost_stats

 	module

 	
 codepost_stats.analyzers

 	module

 	
 codepost_stats.analyzers.abstract

 	module

 	
 codepost_stats.analyzers.abstract.base

 	module

 	
 codepost_stats.analyzers.abstract.simple

 	module

 	
 codepost_stats.analyzers.pool

 	module

 	
 	
 codepost_stats.analyzers.standard

 	module

 	
 codepost_stats.event_loop

 	module

 	
 codepost_stats.helpers

 	module

 	CounterAnalyzer (class in codepost_stats.analyzers.abstract.simple)

 	course (codepost_stats.analyzers.abstract.base.BaseAnalyzer property)

 	(codepost_stats.event_loop.CourseAnalyzerEventLoop property)

 	CourseAnalyzerEventLoop (class in codepost_stats.event_loop)

 	CustomCommentsCounter (class in codepost_stats.analyzers.standard)

D

 	
 	DictStorageAnalyzer (class in codepost_stats.analyzers.abstract.simple)

F

 	
 	failure (codepost_stats.analyzers.pool.SuccessFailurePairType property)

 	fire_event() (codepost_stats.analyzers.pool.AbstractAnalyzerPool method)

 	fire_event_assignment() (codepost_stats.analyzers.pool.AnalyzerPool method)

 	fire_event_comment() (codepost_stats.analyzers.pool.AnalyzerPool method)

 	
 	fire_event_course() (codepost_stats.analyzers.pool.AnalyzerPool method)

 	fire_event_file() (codepost_stats.analyzers.pool.AnalyzerPool method)

 	fire_event_reset() (codepost_stats.analyzers.pool.AnalyzerPool method)

 	fire_event_submission() (codepost_stats.analyzers.pool.AnalyzerPool method)

G

 	
 	GenericCommentsCounter (class in codepost_stats.analyzers.standard)

 	
 	get_by_name() (codepost_stats.analyzers.abstract.simple.CounterAnalyzer method)

 	(codepost_stats.event_loop.CourseAnalyzerEventLoop method)

I

 	
 	initial_value (codepost_stats.analyzers.abstract.simple.DictStorageAnalyzer property)

 	
 	items() (codepost_stats.analyzers.pool.AbstractAnalyzerPool method)

K

 	
 	keys() (codepost_stats.analyzers.pool.AbstractAnalyzerPool method)

M

 	
 	min_characters (codepost_stats.analyzers.standard.GenericCommentsCounter property)

 	min_words (codepost_stats.analyzers.standard.GenericCommentsCounter property)

 	
 module

 	codepost_stats

 	codepost_stats.analyzers

 	codepost_stats.analyzers.abstract

 	codepost_stats.analyzers.abstract.base

 	codepost_stats.analyzers.abstract.simple

 	codepost_stats.analyzers.pool

 	codepost_stats.analyzers.standard

 	codepost_stats.event_loop

 	codepost_stats.helpers

N

 	
 	name (codepost_stats.analyzers.abstract.base.AbstractAnalyzer property)

 	(codepost_stats.analyzers.abstract.base.BaseAnalyzer property)

 	
 	names (codepost_stats.analyzers.abstract.simple.DictStorageAnalyzer property)

 	(codepost_stats.event_loop.CourseAnalyzerEventLoop property)

O

 	
 	only_graders (codepost_stats.analyzers.standard.GenericCommentsCounter property)

R

 	
 	register() (codepost_stats.analyzers.pool.AbstractAnalyzerPool method)

 	(codepost_stats.event_loop.AbstractAnalyzerEventLoop method)

 	reset() (codepost_stats.event_loop.AbstractAnalyzerEventLoop method)

 	
 	RubricCommentsCounter (class in codepost_stats.analyzers.standard)

 	run() (codepost_stats.event_loop.AbstractAnalyzerEventLoop method)

 	(codepost_stats.event_loop.CourseAnalyzerEventLoop method)

S

 	
 	SubmissionsGradedCounter (class in codepost_stats.analyzers.standard)

 	subtract() (codepost_stats.analyzers.abstract.simple.CounterAnalyzer method)

 	
 	success (codepost_stats.analyzers.pool.SuccessFailurePairType property)

 	SuccessFailurePairType (class in codepost_stats.analyzers.pool)

V

 	
 	values() (codepost_stats.analyzers.pool.AbstractAnalyzerPool method)

codepost_stats.analyzers.abstract package

Submodules

codepost_stats.analyzers.abstract.base module

This submodule contains the abstract interfaces for a codePost statistic
analyzer.

The classes implemented here are the parent classes used to build the generic
analyzers implemented in the related submodule,
codepost_stats.analyzers.abstract.simple, that serve as building
blocks for fully implemented analyzers.

Examples of fully-fledged standard analyzers (to do task such as counting
the number of submissions graded, or the number of comments authored, etc.),
are available in the codepost_stats.analyzers.standard submodule.
These can serve as templates illustrating how to implement custom analyzers.

	
class codepost_stats.analyzers.abstract.base.AbstractAnalyzer

	Bases: object

The AbstractAnalyzer class is an abstract class for a codePost
analyzer object.

This abstract analyzer class has a number of protected members, such as
_event_course(), for each of the different objects within the
codePost object model. The analyzer are supposed to be registered with an
event loop object, some subclass of
codepost_stats.event_loop.AbstractAnalyzerEventLoop; once the
event loop is run, it walks through a subset of a codePost course’s data
and triggers events in all registered analyzers.

In this way, the analyzer will walk through the codePost data in
depth-first search order, which means, for instance, that all submissions
of the first assignment will be examined before moving on to the second
assignment, and so on.

Some standard analyzers are provided, such as those in the submodule
codepost_stats.analyzers.standard, but new ones can easily
be authored by overriding one of the provided classes.

Warning

This abstract does not do anything, it is meant to be the least
restrictive interface for an analyzer, and is intended to be used
mainly as an abstract data type in type signatures.

For most purposes, the BaseAnalyzer class (or a subclass)
should be overridden instead.

	
_event_assignment(*args, **kwargs)

	Event triggered when a codePost assignment is visited by an event loop. This
event does nothing in this abstract analyzer class.

	
_event_comment(*args, **kwargs)

	Event triggered when a codePost comment is visited by an event loop. This
event does nothing in this abstract analyzer class.

	
_event_course(*args, **kwargs)

	Event triggered when a codePost course is visited by an event loop. This
event does nothing in this abstract analyzer class.

	
_event_file(*args, **kwargs)

	Event triggered when a codePost file is visited by an event loop. This
event does nothing in this abstract analyzer class.

	
_event_submission(*args, **kwargs)

	Event triggered when a codePost submission is visited by an event loop. This
event does nothing in this abstract analyzer class.

	
_name: Optional[str] = None

	

	
_normalize_str(s)

	Returns a normalized string for purposes of internal string comparisons.

The normalization involves: Returning an empty string if the input parameter
is None, otherwise remove leading and trailing spaces, change all
alphabetical characters to lowercase, and replace internal spaces with dashes.

	Parameters

	s (Optional[str]) – A string to be normalized

	Returns

	The input string s with some transformations

	Return type

	str

	
_reset()

	Resets the internal state of the analyzer.

	Returns

	A boolean indicated whether the reset was successful

	Return type

	bool

	
property name: str

	Get a string representing the analyzer, such as comments.counter.rubric,
that can be used when rendering the output of multiple analyzers.

This name is meant to be informative: By default, it is the same for
every instance of the analyzer class; and there are no guarantees that
it is necessarily unique across all analyzers.

	Returns

	An internal string describing the analyzer

	
class codepost_stats.analyzers.abstract.base.BaseAnalyzer

	Bases: AbstractAnalyzer

The BaseAnalyzer class is an abstract class for a codePost
analyzer object, which expands on the AbstractAnalyzer by
providing completed event signatures with the related codePost models;
it also keeps track of which course is currently being analyzed.

For most purposes, this is the class that should be overridden to author
new analyzer modules, as illustrated in codepost_stats.analyzers.standard.

	
_course: Optional[Courses] = None

	

	
_event_assignment(assignment)

	Event triggered when a codePost assignment is visited by an event loop.
The course containing the assignment can be accessed through this class’
course attribute.

	Parameters

	assignment (Assignments) – The codePost assignment

	
_event_comment(assignment, submission, file, comment)

	Event triggered when a codePost comment is visited by an event loop.
The course containing the assignment can be accessed through this class’
course attribute.

	Parameters

	
	assignment (Assignments) – The codePost assignment

	submission (Submissions) – The codePost submission

	file (Files) – The codePost file

	comment (Comments) – The codePost comment

	
_event_course(course)

	Event triggered when a codePost course is visited by an event loop.

	Parameters

	course (Courses) – The codePost course

	
_event_file(assignment, submission, file)

	Event triggered when a codePost file is visited by an event loop.
The course containing the assignment can be accessed through this class’
course attribute.

	Parameters

	
	assignment (Assignments) – The codePost assignment

	submission (Submissions) – The codePost submission

	file (Files) – The codePost file

	
_event_submission(assignment, submission)

	Event triggered when a codePost submission is visited by an event loop.
The course containing the assignment can be accessed through this class’
course attribute.

	Parameters

	
	assignment (Assignments) – The codePost assignment

	submission (Submissions) – The codePost submission

	
_name: Optional[str] = None

	

	
_reset()

	Resets the internal state of the analyzer.

	Returns

	A boolean indicated whether the reset was successful

	Return type

	bool

	
property course: Optional[Courses]

	Get the currently analyzed codePost course.

This property is updated by the BaseAnalyzer class
when an _event_course() is triggered; if it is accessed
before such an event is triggered, the value returned will be
None.

	Returns

	The codepost course being analyzed

	
property name: str

	Get a string representing the analyzer, such as comments.counter.rubric,
that can be used when rendering the output of multiple analyzers.

This name is meant to be informative: By default, it is the same for
every instance of the analyzer class; and there are no guarantees that
it is necessarily unique across all analyzers.

	Returns

	An internal string describing the analyzer

codepost_stats.analyzers.abstract.simple module

This submodule contains generic analyzer classes that encapsulate common
functionality related to the kind of data being tracked, and are supposed
to be overridden to create classes such as SubmissionsGradedCounter
in codepost_stats.analyzers.standard.

The first generic analyzer is DictStorageAnalyzer, it is designed
to record data with two levels of organization, a first level called the
name and a second level called the subcat or subcategory.
In the above-mentioned example of SubmissionsGradedCounter, for
instance, the name would be the login email of the grader and the
subcat would be the names of the assignment.

In fact, because there are many scenarii in which one might want to aggregate
counts over the codePost data, there is a dedicated generic analyzer for this
specific purpose, CounterAnalyzer, which is child class to the
DictStorageAnalyzer with an interface specifically designed to keep
tally with CounterAnalyzer.add() and CounterAnalyzer.subtract().

	
class codepost_stats.analyzers.abstract.simple.CounterAnalyzer

	Bases: DictStorageAnalyzer

The CounterAnalyzer class is a generic class for a codePost
analyzer object, that makes it easy to count statistics (number of
submissions graded, comments written, etc.).

This class handles all the initialization and provides two methods,
add() and subtract(), to update the internal counters.

Once the analysis is completed, it can be retrieved by iterating over
the names attribute, to see all the names for which data has
been recorded, and for each name, call the get_by_name() function
to retrieve the dictionary of values associated with that name (and
divided by subcategories).

This is a high-level analyzer class. The child class
codepost_stats.analyzers.standard.SubmissionsGradedCounter
provides an example of how to use this class to count the number of
submissions graded.

	
add(name, subcat, delta=1)

	Adds to the counter, for the name and subcat record,
by relative nonnegative value delta.

This method is implemented by an internal call to _delta_counter(),
which is a slightly more powerful method, in particular allowing for
arbitrary values of delta.

	Parameters

	
	name (str) – The name identifier

	subcat (str) – The subcategory identifier

	delta (int) – (Optionally) the relative amount by which to adjust the counter

	Raises

	
	ValueError – If the subcategory subcat does not exist and the
subcategory warning is not suppressed

	ValueError – If the provided delta is negative

	Returns

	The new value of the counter that has been modified

	Return type

	int

	
get_by_name(name, normalize_str=True)

	Returns a dictionary of all the values stored associated with name.

	Parameters

	
	name (str) – The name identifier of the data to query

	normalize_str (bool) – (Optional) flag to indicate whether to normalize
the names of subcategories, using the internal _normalize_str()
normalization function

	Returns

	A dictionary mapping each subcategory to a counter, for the
provided name

	Return type

	Dict[str, int]

	
subtract(name, subcat, delta=1)

	Subtracts from the counter, for the name and subcat
record, by relative nonnegative value delta.

This method is implemented by an internal call to _delta_counter(),
which is a slightly more powerful method, in particular allowing for
arbitrary values of delta.

	Parameters

	
	name (str) – The name identifier

	subcat (str) – The subcategory identifier

	delta (int) – (Optionally) the relative amount by which to adjust the counter

	Raises

	
	ValueError – If the subcategory subcat does not exist and the
subcategory warning is not suppressed

	ValueError – If the provided delta is negative

	Returns

	The new value of the counter that has been modified

	Return type

	int

	
class codepost_stats.analyzers.abstract.simple.DictStorageAnalyzer

	Bases: BaseAnalyzer

The DictStorageAnalyzer class is a generic class for a codePost
analyzer object, that stores its output data in a dictionary.

The dictionary storage is designed to contain two levels of organization:
The top-level index is a name, such as for instance a grader email
address; the secondary index is for a subcategory, for instance an
assignment name.

Because this class, like both
codepost_stats.analyzers.abstract.base.AbstractAnalyzer and
codepost_stats.analyzers.abstract.base.BaseAnalyzer, is not
intended to be used directly, many of its fields and methods are private.

	
property initial_value: _DictValueType

	Gets (an immutable copy of) the initial value that is assigned
to newly created data cells, before they are first assigned to.

	Returns

	The initial value assigned to uninitialized cells

	
property names: List[str]

	Gets a list of the names for which data has been recorded since
the last reset of the analyzer.

	Returns

	A list of names for which data has been recorded

Module contents

This submodule provides the abstract interface of a codePost analyzer,
as well as some high-level generic analyzers, which seek to identify a
few general types of statistics that may be computed on codePost data,
so as to limit the amount of redundant code that must be written to
support such analyses.

As an example, a typical kind of analysis on codePost data might involve
counting the number of occurrences of certain objects (submissions, comments,
files, etc.), or the number occurrences of specific types of objects
(submissions by grader, comments by recipient, etc.)

This is the purpose of the generic analyzer class
codepost_stats.analyzers.abstract.CounterAnalyzer, which
contains all the boilerplate code necessary to keep track of many counters
over codePost data. This generic analyzer class is then used to provide
specialized analyzers such as the following:

	codepost_stats.analyzers.standard.SubmissionsGradedCounter
which keeps track of the number of submissions graded, for each assignment,
by the graders registered in the course;

	codepost_stats.analyzers.standard.GenericCommentsCounter
which counts the number of comments, for each assignment, by the graders
registered in the course, with the possibility of further filtering which
kind of comments are actually taken into account (rubric comments versus
custom comments, and so on).

codepost_stats.analyzers package

Subpackages

	codepost_stats.analyzers.abstract package
	Submodules

	codepost_stats.analyzers.abstract.base module

	codepost_stats.analyzers.abstract.simple module

	Module contents

Submodules

codepost_stats.analyzers.pool module

This submodule contains the analyzer pool interface and an implementation.

An analyzer pool is a collection of analyzers, of which the events can be
triggered together by firing an event on the analyzer pool and have it
propagate to every analyzer registered in the pool. The analyzer pool is
the mechanism by which an event loop, such as those implemented in the
codepost_stats.event_loop submodule, can keep track of analyzers
and how to propagate events to them.

	
class codepost_stats.analyzers.pool.AbstractAnalyzerPool

	Bases: object

An abstract interface for an analyzer pool, a collection of analyzer
objects, of which the event handlers can be triggered together using
fire_event() or some inherited method by an event loop.

	
analyzers()

	Returns a list of all analyzers registered with this analyzer pool.

To add an analyzer to this list, use the register() method.

	Returns

	A list of all analyzers registered with this analyzer pool

	Return type

	List[BaseAnalyzer]

	
fire_event(event_handler_name, arguments=None)

	Fires an event throughout all analyzers registed in the pool.

This method takes event_handler_name, a string, which
is the name of the event handler to trigger in the registered
analyzers, such as "_event_course" to trigger the event handler
codepost_stats.analyzers.abstract.base.BaseAnalyzer._event_course().

This method also takes arguments, an optional dictionary
of arguments to pass to the event handler as a **kwargs
argument.

To avoid blocking or interrupting the execution of an event loop,
the event handlers are called within a try-catch block. When an event
handler fails, this is tracked. The final count of event handlers
that succeeded and those that failed is returned as a tuple of integers.

	Parameters

	
	event_handler_name (str) – The name of the event handler to trigger

	arguments (Optional[dict]) – The dictionary of arguments to provide the event handler

	Returns

	A pair reporting how many event triggers were successful and
how many failed

	Return type

	SuccessFailurePairType

	
items()

	Returns a list of all pairs of name and analyzer registered with
this analyzer pool.

To add an analyzer to this list, use the register() method.

	Returns

	A list of pairs (name, analyzer) of registered analyzers

	Return type

	List[Tuple[str, BaseAnalyzer]]

	
keys()

	Returns a list of the names of all analyzers registered with this
analyzer pool.

To add an analyzer to this list, use the register() method.

	Returns

	A list of the names of all analyzers registered with this
analyzer pool

	Return type

	List[str]

	
register(analyzer, name=None)

	Adds an analyzer to the analyzer pool.

This method adds the provided analyzer to the analyzer pool,
optionally, using the name that is provided. If no name is
provided, the method while try to use the BaseAnalyzer.name
attribute; if this attribute is undefined, a random unique name
will be generated.

Warning

Names must be unique within the analyzer pool. Therefore
if two analyzers are registered with the same name, the
second will overwrite the first analyzer in this pool.

	Parameters

	
	analyzer (BaseAnalyzer) – The analyzer to add to the pool

	name (Optional[str]) – An optional name under which to register the analyzer

	Raises

	TypeError – If the provided analyzer is not
a subclass of codepost_stats.analyzers.abstract.base.BaseAnalyzer.

	Return type

	NoReturn

	
values()

	Returns a list of all analyzers registered with this analyzer pool.
This function is an alias for the analyzers() function.

To add an analyzer to this list, use the register() method.

	Returns

	A list of all analyzers registered with this analyzer pool

	Return type

	List[BaseAnalyzer]

	
class codepost_stats.analyzers.pool.AnalyzerPool

	Bases: AbstractAnalyzerPool

	
fire_event_assignment(assignment)

	
	Parameters

	assignment (Assignments) –

	
fire_event_comment(assignment, submission, file, comment)

	
	Parameters

	
	assignment (Assignments) –

	submission (Submissions) –

	file (Files) –

	comment (Comments) –

	
fire_event_course(course)

	
	Parameters

	course (Courses) –

	Return type

	SuccessFailurePairType

	
fire_event_file(assignment, submission, file)

	
	Parameters

	
	assignment (Assignments) –

	submission (Submissions) –

	file (Files) –

	
fire_event_reset()

	
	Return type

	SuccessFailurePairType

	
fire_event_submission(assignment, submission)

	
	Parameters

	
	assignment (Assignments) –

	submission (Submissions) –

	
class codepost_stats.analyzers.pool.SuccessFailurePairType(success=0, failure=0)

	Bases: tuple

A helper type to report the number of event firings that were successful
or a failure, when triggering events using an analyzer pool.

	Parameters

	
	success (int) –

	failure (int) –

	
property failure

	Number of event firings that have failed.

	
property success

	Number of event firings that have succeeded.

codepost_stats.analyzers.standard module

This submodule contains standard analyzers for codePost data, representing the typical
kind of statistics that a codePost instructor might want to collect. In addition, the
code of these analyzers may provide a good starting base for authoring new analyzers.

	
class codepost_stats.analyzers.standard.CustomCommentsCounter

	Bases: GenericCommentsCounter

An analyzer class to count the number of custom comments created (ignoring any
comment that is tied to a rubric comment), for each assignment, by each grader.

This class extends GenericCommentsCounter, and contains all the
capabilities of its parent class, in particular in terms of restricting comments
by their character, word length or authorship.

	
class codepost_stats.analyzers.standard.GenericCommentsCounter

	Bases: CounterAnalyzer

An analyzer class to count the number of comments created, for each assignment,
by each grader.

This class has a number of properties to restrict which comments are
included in the tally—depending on the number of characters, words, or whether
the comment was authored by the grader of the submission.

The subclasses CustomCommentsCounter and RubricCommentsCounter
illustrate how to further restrict the kind of comments that are counted.

In terms of counter storage, the name is the author of a comment and
the subcat is the assignment name. Submissions will be ignored if they
are not assigned to a grader, or if they are not yet finalized.

	
property min_characters: Optional[int]

	Gets or sets the minimum number of characters threshold, under which a comment
will be ignored. To remove this threshold, set this property to None.

	Return type

	Optional[int]

	
property min_words: Optional[int]

	Gets or sets the minimum number of words threshold, under which a comment
will be ignored. To remove this threshold, set this property to None.

Note

If s is the string representing the text of the comment, the number of
words is computed using the Python expression len(s.split()).

	Return type

	Optional[int]

	
property only_graders: bool

	Gets and sets a flag that indicates whether to ignore any comment of which
the author is not the same as the grader of the submission (this may be the
case if a course instructor or administrator has added a comment to a
submission that may have been graded by someone else, for instance).

	Return type

	bool

	
class codepost_stats.analyzers.standard.RubricCommentsCounter

	Bases: GenericCommentsCounter

An analyzer class to count the number of comments created that are linked to a
rubric comment (ignoring any custom comment), for each assignment, by each grader.

This class extends GenericCommentsCounter, and contains all the
capabilities of its parent class, in particular in terms of restricting comments
by their character, word length or authorship.

	
class codepost_stats.analyzers.standard.SubmissionsGradedCounter

	Bases: CounterAnalyzer

An analyzer class to count the number of submissions graded, for each assignment, by
each grader.

In terms of counter storage, the name is the grader and the subcat
is the assignment name. Submissions will be ignored if they are not assigned to a grader,
or if they are not yet finalized.

Module contents

The codepost_stats.analyzers submodule contains all the logic
related to analyzers.

This includes:

	The analyzer interfaces, AbstractAnalyzer and BaseAnalyzer,
are defined in the codepost_stats.analyzers.abstract.base submodule;

	Some generic high-level implementations of analyzers, such as
DictStorageAnalyzer to define an analyzer that collects information
in a nested dictionary, or such as CounterAnalyzer which is an even
more specialized analyzer that keeps track of integer counts, are defined in the
codepost_stats.analyzers.abstract.simple submodule;

	Some examples of fully-implemented analyzers, such as SubmissionsGradedCounter
or GenericCommentsCounter, are available from the
codepost_stats.analyzers.standard submodule;

	The interface and an implementation of analyzer pools is defined in the
codepost_stats.analyzers.pool submodule.

The most important part of the codebase are the implementations of analyzers in the
codepost_stats.analyzers.standard submodule: These provide good examples
from which to generate new analyzers.

codepost_stats package

Submodules

codepost_stats.code_analysis module

codepost_stats.event_loop module

	
class codepost_stats.event_loop.AbstractAnalyzerEventLoop

	Bases: object

	
register(analyzer, name=None)

	
	Parameters

	
	analyzer (Union[BaseAnalyzer, type]) –

	name (Optional[str]) –

	Return type

	NoReturn

	
reset()

	

	
run()

	

	
class codepost_stats.event_loop.CourseAnalyzerEventLoop(course_name, course_term)

	Bases: AbstractAnalyzerEventLoop

	Parameters

	
	course_name (str) –

	course_term (str) –

	
property assignments: List[str]

	

	
property course: Courses

	

	
get_by_name(name)

	
	Parameters

	name (str) –

	
property names: List[str]

	

	
run()

	

codepost_stats.helpers module

	
codepost_stats.helpers.check_int_like(value)

	
	Parameters

	value (Optional[int]) –

	Return type

	Optional[int]

Module contents

A system to compile statistics automatically from a course on the codePost platform.

codepost_stats

	codepost_stats package
	Submodules

	codepost_stats.code_analysis module

	codepost_stats.event_loop module

	codepost_stats.helpers module

	Module contents

 nav.xhtml

 Table of Contents

 		
 Welcome to codepost-stats’s documentation!

_static/minus.png

_static/plus.png

_static/file.png

